ASYN/StreamDevice
Support Frameworks

Eric Norum

Ih”rs ASYN/StreamDevice
QAL

ASYN

* What 1s 1t?

* What does it do?

* How does 1t do 1t?
* How do I use 1t?

Iﬂ“fs ASYN/StreamDevice

CIRAS

What 1s 1t?

Asynchronous Driver Support is a general purpose
facility for interfacing device specific code to low
level communication drivers

!s’[s ASYN/StreamDevice

asyn Architecture

Device support (or SNL code,
another driver, or non-EPICS
software)

asynCommon ' Inter‘faces (named; ' asynQOctet (write,
(connect, report, ...)y PUI€ virtual functions)y reaq, setlnputEos,...)

Port (named object)

Port driver

addrO' addr=1 I

device device

m‘m ASYN/StreamDevice

CIRAS

Control flow — asynchronous driver

Code running in
application thread

Code running in
port thread

Record Support

= =

J\ i ?(ﬁ)E

| 5(’

ASYN
3 4

H““t A Work Queue &

Record Device Support ;’
= X
{

Low-level Driver ;

)

m“fg ASYN/StreamDevice

CIRAS

Control flow — synchronous driver

All code runs in
application thread

Record Support

= y_.

\.,E Record Device Support f

X Pt

Low-level Driver %

I\q""g ASYN/StreamDevice

ASYN Components — asynManager

Provides thread for each communication interface
— All driver code executes in the context of this thread

Provides connection management
— Driver code reports connect/disconnect events

Queues requests for work
— Nonblocking — can be called by scan tasks

— User-supplied callback code run in worker-thread context makes
calls to driver

— Driver code executes in a single-threaded synchronous
environment

Handles registration
— Low level drivers register themselves

— Can ‘interpose’ processing layers

!S”[s ASYN/StreamDevice

ASYN Components — asynCommon

* A group of methods provided by all drivers:
— Report
— Connect
— Disconnect
— Set option
— Get option
* Options are defined by low-level drivers
° e.g., serial port rate, parity, stop bits, handshaking

!“‘.[s ASYN/StreamDevice

ASYN Components — asynOctet

Driver or interposed processing layer

Methods provided in addition to those of asynCommon:
— Read

— Write

— Set end-of-string character(s)

— Get end-of-string character(s)

* All that’s needed for serial ports, ‘telnet-style’ TCP/IP devices,
USB-TMC.

* The single-threaded synchronous environment makes driver
development much easier

— No fussing with mutexes
— No need to set up I/O worker threads

!s’[s ASYN/StreamDevice

ASYN Components — asynGpib

* Methods provided in addition to those of asynOctet:
— Send addressed command string to device
— Send universal command string
— Pulse IFC line
— Set state of REN line
— Report state of SRQ line
— Begin/end serial poll operation
* Interface includes asynCommon and asynOctet methods

— Device support that uses read/write requests can use asynOctet
drivers. Single device support source works with serial or GPIB.

!s’[s ASYN/StreamDevice

ASYN Components — asynRecord

Diagnostics
— Set device support and driver diagnostic message masks
— No more ad-hoc ‘debug’ variables!

General-purpose 1/0
— Replaces synApps serial record and GPIB record

Provides much of the old ‘GI’ functionality
— Type in command, view reply
— Works with all asyn drivers

A single record instance provides access to all devices in IOC

!s’[s ASYN/StreamDevice

asynRecord

* EPICS record that provides access
to most features of asyn, including
standard I/O interfaces

* Applications:
—Control tracing (debugging)
—Connection management
—Perform interactive I/O

* Very useful for testing, debugging,
and actual I/O 1in many cases

* If your IOC uses ASYN it should
provide at least one asynRecord
to give clients control of
diagnostic messages!

iy

asynRecord siochbcm:asyn

slocchem: asyn

Fort: | B addreze: | -1
| Connec £ L] | Cannected
drvInfo: I Feagon: I]
Interface: | azynoctet L |
Cancel cueueRequest | Hore...
Error:
Cennectad Enabled aut ofennact
‘ Connect _|| | Enakle I | | autoConnect _|

traceMazk

I O=1

Off|| op EraceError
Off ©p |traceICDewvice

0ff o | traceIoFilter
off o | traceIcDriver

off lon | EraceElow

off lon | traceWarning

traceItMazk

I 020

traceInfoMaszk

I O=x=1

off o | EraceICASCIT
off |on | EraceltEscaps

off |og | Eracelofex

I 20 Truncate =ize

off|| on traceInfoTime

off o | traceInfoPort

off og | traceInfoscurce

off log | EraceInfoThread

Trace file:

Tnkoown

I‘)”[s ASYN/StreamDevice

asynRecord — asynOctet devices

Configure serial port parameters

> asynSerialPo -0 x|

13LAB:serialy
asynOption: Supported

Interactive I/0 to serial device

>< asynOctet.adl Baud rate: za400 |
. Data bits: 5 =
15LAB:serial7 _ |
Stop bits: 1 4|

Timeout (sec): [[.0000 Transfer: writeskesd | Parity:
asynOctet interface: Supported Active arity: it -
Flow control: Hone =

Uutput Format: mscu -l| Terminator: [ir
HSCII - [‘tptptp
Length: Requested: [0 Actual: 6

Input Format: _sscit | Terminator: [ir
ASCIT :[1TP30, 001, 2TP{. 000, STP-0, 001, 4TP0, 000 |

Length: Requested: [0 Actual: 37 >< asynGPIBSetup.adl

EOM reason: Eos -
|1/0 Status:NO ALARK I/0 Severity:NO ALARM | - 13LAB:gpibl
asynGpib interface: Supported

Scan: Passive | Procesz | More... m |
GPIB address: B

Serial poll response: 0x0

Perform GPIB-specific operations

Universal Command Hone |

Addressed Command Hone |

!ﬂ“rs ASYN/StreamDevice

asynRecord — register devices

Same asynRecord, change to ADC port Read ADC at 10Hz with asynInt32 interface

’< asynRegister.adl

>< asynRecord.adl

13LAB:serial7 13LAB:serial7
Port : [Ip330_1 Address: [0 Timeout (sec): [1,0000 Transfer: Read =
O | Connected Interface: Int32 UInt32Digital Float64

drvInfo:data Reason: o asynint3z 4| Supported Unsupported Supported
Interface: asundstet | Active Inactive Inactive
Cancel gueusRenuest | More... & | Uutput: IU ID IC'
Error: OQutput (hex): [0 [0

Connected Enabled autoConnect Input: 32769 0 0

Conmect = | Enable = | autoConnect I Input Chex): 0x8001 0x0
traceMask tracelOMask Hask thex): AR
CT— (T — I1/0 Status:NO_ALARKM I/0 Severity:NO ALARM |
offl On traceError [OFf On | tracel0&SCTT Scan: . sscond | Process | More... m |
[0ff on | tracel0Device [0Ff 0On | tracel0Escape
[0Ff On | tracelOFilter [0Ff On|tracel(lHex
[0ff On | tracelllriver [z0 Truncate size
|OFf on | traceF low
Trace file: [Unknoun
!ﬂ“[g ASYN/StreamDevice

asynRecord — register devices

Same asynRecord, change to DAC port Write DAC with asynFloat64 interface

>< asynRecord.adl

’< asynRegister.adl

13LAB:serial 7 13LAB:serial’
Port : [fACL Address: [0 Timeout (sec):[1,0000 Transfer: riterRead
Comneot | Connected Interface: Int32 UInt32Digital Float64
drvInfo:dats Reason: 0 asurFlostes | Supported Unsupported Supported
Interface: ssurrlostes o | Inactive Inactive Active
Cancel gueusReouest | More... & | Uutput: I.O [0 [500
Error: | OQutput (hex): [0x0 ()
Connected Enabled autoConnect Input: 2048 0 500
Conrect - Enakle] autoConnect i | Input (hex): 0x800 0x0
traceMask tracelOMask Hask Chex) - ot
T— G — I1/0 Status:NO_ALARKM I/0 Severity:NO ALARM |
offf on traceError [0Ff On | tracel0ASCIT Scan: Passive | Process | More... @ |
[0Ff 0On | tracellDevice [0Ff 0On| tracellEscape
[0Ff On | tracel0Filter [0Ff On|tracelOHex
[0ff On|tracellDriver [0 Truncate size
[0Ff On | traceF low
Trace file: [Unknoun
!ﬂ“[g ASYN/StreamDevice

Tracing and Debugging

% asynRecord siocbcm:asyn

Standard mechanism for printing diagnostic messages in
device support and drivers

siocechem: asyn

. . . . Port: | BOM CMD addrese: | -1
* Messages written using EPICS logging facility, can be sent |] connected
to stdout, stderr, or to a file Sonnect '
drvInfor edson: I
* Device support and drivers call: IIt . : | R_I |
. nterface: azynoctet
— asynPrint(pasynUser, reason, format, ...)
— asynPrintlO(pasynUser, reason, buffer, len, format, ...) | cancel qreverapant |
- Reason' Error:
°* ASYN TRACE ERROR
s at=) nabled
°* ASYN_TRACEIO_DEVICE S :
- - | Connect L | ‘ Enakle L | |naﬂutDCDnnectJ
°* ASYN TRACEIO FILTER
traceMazk traceICMazlk
°* ASYN TRACEIO _DRIVER [ot
® ASYN_TRACE_FLOW ﬂ oo traceError ’E on traceTOARSCTT
* ASYN_TRACE_WARNING [o£¢ [on | tracetonevice fog: jon | traceToBecaps
* Tracing is enabled/disabled for (port/addr) [o£€ [on] tracetomsleer pegfop tracerofiex

off ||op | traceIthriver Ign Truncate size

Trace messages can be turned on/off from iocsh, vxWorks e racelon e

) _ :
shell, and from CA clients such as EDM via asynRecord — I

v}
e

R asynOctet I/O from shell et traceatoTine
off | lon traceInfocFort
off | lon traceInfoScurce

off|lon | traceInfoThread

Trace file: IUﬂknDNn

!ﬂ“rs ASYN/StreamDevice

Typical source file arrangement

* Instrument support is placed in
.../ nodul es/instrunent/ <i nstrunment nane>/ Rx. y/

* Each <i nstrunent nane>/ Rx. y/ directory contains at least

Makefil e

confi gure/

<l nst runent Nane>Sup/
docunent at i on/

Li cense

!S”[s ASYN/StreamDevice

Script to make this a little easier

* nkdir /./nodul es/instrunent/nyinst/head

* cd /./[nodul es/instrunent/nyinst/head

e /<path to ASYN support nopdul e>/bi n/ <ar ch>/ makeSupport . pl
-t streantCPl nyi nst

Makefil e
configure/...
nmyi nst Sup/
Makefil e devnyinst.db devnyinst.proto

docunent ati on/
devnyi nst . ht n

* Afew changes to the latter 3 files and you're done!

* Notice that there are no C or C++ files.
— Running make just copies the . db and . prot o files to the
support module top-level db/ directory.

Isufs ASYN/StreamDevice

©

Introduction to Stream Device

* Generic EPICS device support for devices with “byte stream”
communication.

- RS-232 (Local serial port or LAN/Serial adapter)
- TCP/IP

- VXI-11

— GPIB (Local interface or LAN/GPIB adapter)

- USB-TMC (Test and Measurement Class)

* Asingle stream device module can serve to communicate using
any of the above communication mechanisms.

!h”[s ASYN/StreamDevice

Introduction to Stream Device

Command/reply messages:
- *IDN?

- SET:VOLT 1.2
— Non-ASCII ‘strings’ too

Command generation and reply parsing configured by protocols

Formatting and interpretation handled with format converters

— Similar to C printf/scanf format strings

— Custom converters too, but not easy

!h”[s ASYN/StreamDevice

Stream Device Protocols

* Defined in protocol files
* Plain ASCII text file
* No compiling — IOC reads and interprets protocol file(s) at startup

* Protocols are linear
— No looping

— No conditionals
- Rudimentary exception handlers
* Asingle entry can read/write multiple fields in one or many records

* Output records can be initialized from instrument at IOC startup

- With one big caveat — instrument must be on and
communicating at IOC startup

!h”[s ASYN/StreamDevice

StreamDevice EPICS Database

record(bo, "(P)(R) CLS") {
fiel d(DESC, "SCPlI O ear status")

field(DTYP, "streanl)
field(OQUT, "@evnylnst.proto cnmd(*CLS) $(PORT) $(A")

}
record(longin, "(P)(R) Get STB") {
fiel d(DESC, "SCPlI get status byte")
field(DTYP, "streanl)
field(INP, "@levnylnst.proto getD(*STB) $(PORT) $(A")

}

* DTYP=stream

* INP/OUT fields specify protocol file name, protocol entry (with
optional arguments), ASYN port and address.

* Address can be any value (typically 0) for single-address interfaces.

m“fg ASYN/StreamDevice

CIRAS

StreamDevice Protocol File

cmd {
out "\ $1";
}
get D {
out "\$1?";
in "%d";
}

* Protocol entries contain statements to produce output and request
input
* C-style escape sequence can be used ("\r', "\n', \033', "\e")
* Format converters are similar to those used by C printf/scanf
* By default the VAL or RVAL field 1s used as the data
source/destination
* Can refer to any field, even in another record

m“fg ASYN/StreamDevice

CIRAS

StreamDevice Additional Records

DTYP # stream for protocol entry additional records:

record(stringin, "(P)(R) Serial")

{
fiel d(DESC, "Serial nunber")
field(DTYP, "Soft Channel")
}
record(ai, "(P)(R) VP5")
{

field(DESC, "+5V supply")
field(DTYP, "Raw Soft Channel ")
field(EQJ, "V')

fiel d(PREC, "3")

field(LINR, "SLOPE")
field(ESLO, "1le-3")

}lécord(l ongin, "(P)(R) Tenmpl")

{
fiel d(DESC, "Sensor 1 tenperature")

field(DTYP, "Soft Channel")

!q‘.[s ASYN/StreamDevice

StreamDevice Protocol File

Protocol entries can be long — Use multiple lines and string
concatentation to improve readability

query {

out "Q@Q';

in ":"
"SN=9{\ $1Serial . VAL) 39[*,], "
"UN=%\ $1Nane. VAL) 39[",], "
"IP=%%[",],"
"Vv3=%, "
"V5=0¢\ $1VP5. RVAL) d, "
"V+12=9%\ $1VP12. RVAL) d, "
"V-12=9%\ $1VML2. RVAL) d, "
"T1=9%\ $1Tenpl. VAL), "

"POH=% \ $1Hour sOn. VAL) g, "
" MAXTMP=% \ $1Max Tenp. VAL) g; "

}

Notice the use of the width field — guard against buffer overruns!

Iﬂ“fs ASYN/StreamDevice

CIRAS

StreamDevice Protocol File — Terminators

* Terminators can be set globally or per entry.
* Some interfaces can handle only a single character. If device replies

with "\r\n' then specify | nTer mi nat or ="\ n' and ignore the \r' in the

reply.
| nTerm nator = "\n";
Qut Term nator = "\r";

m“fs ASYN/StreamDevice

CIRAS

StreamDevice Protocol File — Initial Readback

* Useful to set initial value of output records to match the value
presently in the instrument.

* (@init ‘exception handler’

* Often the same as the corresponding readback prototype entry

get F {
out "\ $1?";
in "%";
}
set F {
@nit { out "\$1?"; in "%U",; }
out "\$1 % ";
}

record(ao, "(P)(R) IntegrationTine")
{
fiel d(DESC, "Reading integration tinme")
fiel d(DTYP, "streant)
field(OUT, "@levKeithl ey6487. proto set F(NPLC) $(PORT) $(A")

Iﬂ“fs ASYN/StreamDevice

CIRAS

Adding StreamDevice/ASYN instrument
support to an application

* This is easy because the instrument support developers always
follow all the guidelines — right?

* Most of these steps apply to pretty much any support module, not
just StreamDevice/ASYN instruments.

!s’[s ASYN/StreamDevice

Make some changes to configure/RELEASE

* Edit the configure/RELEASE file created by makeBaseApp.pl
* Confirm that the EPICS BASE path is correct
* Add entries for the instruments and ASYN:

DAWN RUSH =/ usr /| ocal / epi cs/ R3. 14. 12/ nodul es/i nst runent / DawnRuSH R1- 0
ASYN =/ usr/ 1 ocal / epi cs/ R3. 14. 12/ nodul es/ soft/ asyn/ asynR4- 21

EPI CS_BASE=/ hone/ EPI CS/ base

!s’[s ASYN/StreamDevice

Modify the application Makefile

xxX_DBD += base. dbd
xxXx_DBD += stream dbd

xxX_DBD += drvAsynl PPort . dbd
(and/ or drvAsynSeri al Port.dbd, drvAsynUSBTMC. dbd, etc.)

xxx_DBD += asyn. dbd

XXX _LI BS += stream asyn

!q‘.[s ASYN/StreamDevice

Modify the application database Makefile

Copy the instrument support database and prototype files to the
application <top>/db/ directory:

DB | NSTALLS += $(DAWN RUSH) / db/ devDawnRuSH. db
DB | NSTALLS += $(DAWN RUSH) / db/ devDawnRuSH. pr ot o

!s’[s ASYN/StreamDevice

Modity the application startup script

epi csEnvSet (" CRATE_ADDRESS", " $(CRATE ADDRESS=cr at eapex01: 23) ")
(above line is optional, but makes it easy to override for testing)

epi csEnvSet (" STREAM PROTOCOL_PATH', "${ TOP}/ db")
dr vAsynl PPort Confi gure(" CRO", "$(CRATE _ADDRESS) TCP", 0, 0, 0)

dbLoadRecor ds(" db/ devDawnRuSH. db", " P=apexCr at e: , R=1: , PORT=CR0")

* PR —PV name prefixes — PV names are (P)(R)name
* PORT-ASYN port name from corresponding devxxxConf i gur e command

!S”[s ASYN/StreamDevice

[Lab Session
Control ‘network-attached device’
Host www.xxx.yyy.zzz — TCP Port 24742

"\n' command terminator, \r\n' reply terminator

*IDN?

* Returns device i1dentification string (up to 100 characters)
LOAD?

* Returns three floating-point numbers separated by spaces (1, 5,
15 minute load average)

* ON?
* Returns OFF/ON (0/1) status

VOLTS?
— Returns most recent voltage setting

CURR?
— Returns current readback (x11A)

!s’[s ASYN/StreamDevice

Lab Session
Control ‘network-attached device’

* ON |0,]

* Turns supply OFF/ON (0/1)
* VOLTS x.xxxx

* Sets voltage (=10V range)

!“‘.[s ASYN/StreamDevice

	ASYN Device Support Framework
	ASYN
	What is it?
	asyn Architecture
	Control flow – asynchronous driver
	Control flow – synchronous driver
	ASYN Components – asynManager
	ASYN Components – asynCommon
	ASYN Components – asynOctet
	ASYN Components – asynGpib
	ASYN Components – asynRecord
	asynRecord
	asynRecord – asynOctet devices
	asynRecord – register devices
	Slide 15
	Tracing and Debugging
	Recommended source file arrangement
	There’s a script to make this a little easier
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Make some changes to configure/RELEASE
	Slide 30
	Slide 31
	Modify the application startup script
	Slide 33
	Lab session – Control ‘network-attached device’

